How to manually update a Shelly firmware using a OTA http request

I’m using Home Assistant to do a bit of home automation.
Shellies are, in my humble opinion, among the best devices out there.

For almost every new shelly I bought, I had to first do a firmware upgrade to have it detected and managed by Home Assistant’s Shelly integration, which doesn’t support older firmware versions.
The update procedure is usually very easy to do: you add the Shelly to your wifi domotics network, you access to its web interface (you need to know the device’s IP address) and it should already be warning you about the new firmware available, or you can use the Shelly app to find it and accomplish the upgrade in just a few clicks.
Once the firmware gets updated, your Home Assistant integration will find the device very quickly and show an “add” widget to get it under your zone in one or two clicks.

Sometimes, however, the Shelly firmware that comes with your new device might have difficulties in finding the new firmware online. It happened to me with a Shelly Plug S.

In that case you still have some viable options: one is adding your Shelly as MQTT device and have it working under Home Assistant via MQTT broker (i.e. the Mosquitto add-on), but if you prefer using the Shelly integration, you can get around the device’s autodiscovery issue and “instruct” it on what firmware you want it to download.

To accomplish this you can open the Shelly Firmware Archive link website, it will open up a page that looks like:

Enter the device’s IP address and the shelly type. It will let you choose the firmware version (usually the highest is the one you want). Once filled the form will generate the correct URL to paste into your browser’s address bar for telling your Shelly to do an OTA update.

In my case the device’s IP was 192.168.5.241 and the model “SHPLG-S”, the generated url for the firmware version I chose was: http://192.168.105.241/ota?url=http://archive.shelly-tools.de/version/v1.11.7/SHPLG-S.zip

Once pasted into the browser’s address bar you should see something like the following:

OTA update page view under Firefox 95

Just a few moments and your device will reboot with the supplied firmware!

It’s been very helpful for me so I decided to share it.

Hoping this helps.

73 de IU3JSX Marco

MoCA: alternativa di “fascia alta” agli adattatori powerline

Per chi vive in una casa relativamente grande ma non molto recente quindi priva di rete ethernet cablata – e anche dello spazio utile per poter passare i cavi nell’impianto, le due opzioni che vanno per la maggiore per estendere la propria rete domestica wireless sono:

  1. Estendere la portata del segnale radio wi-fi mediante rete mesh (o anche i vecchi “range extender”);
  2. Usare degli adattatori powerline per poi connettere ulteriori acess point wi-fi alla rete cablata così ottenuta (alcuni adattatori hanno l’access point incorporato).

Adattatori powerline

L’opzione 2 funziona solitamente meglio rispetto ad una rete mesh puramente wireless ed è più che sufficiente per esigenze generiche ovvero connettersi alla Rete per navigare, utilizzare i social dai propri smartphone/tablet e vedere film on demand sulle varie piattaforme.

Rispetto alle performance che offrirebbe una LAN ethernet da 1 Gbps (ovvero ping di 0.1 ms e troughput di 1000 Mbps full duplex), però, gli adattatori powerline sono ancora abbastanza lontani. Si parla infatti di latenze intorno ai 4-6ms e di banda reale dell’ordine del centinaio di Mbps in condizioni buone/ottimali, a volte anche meno (a casa mia ad esempio siamo sui 45 Mbps negoziati). Questo con adattatori che decantano 600 Mbps e oltre (ma anche 1000 o addirittura 2000Mbps), dotati di connettori gigabit ethernet. Ci sono molte review a riguardo, ad esempio questa che ci introduce all’argomento di questo post.

Gli adattatori powerline, per funzionare, si basano su appositi chipset che contengono un modem, necessario a trasformare la rete di distribuzione elettrica in una linea dati che permetta la comunicazione bidirezionale (o più in generale tra N apparati). Ovviamente la rete elettrica non è progettata per la trasmissione dati a larga banda, anzi è quanto di più lontano ci possa essere anche dal punto di vista realizzativo, quindi non si può certo biasimare questi chipset per non dare le stesse performance di un cavo ethernet, anzi possiamo dire che fanno un piccolo miracolo! Spesso marchi diversi montano lo stesso chipset, questo perché i relativi produttori non sono poi molti.

Adattatori MoCA

Scavando un po’ più a fondo emerge che in realtà oggi esiste almeno un’opzione 3, poco usata in Italia ma ben più comune in USA, ovvero usare il cavo TV (invece della linea 220V) come rete dati.
Lo standard usato per questo tipo di adattatori è chiamato MoCA, letteralmente “Multimedia Over Coax Alliance”, che oggi è alla versione 2.5.

Essendo attestata su un coassiale a 75 ohm con basse perdite di segnale e schermature solitamente adeguate, non dovrebbe stupire che le performance ottenibili siano ben superiori rispetto al powerline, tanto che come troughput saturano facilmente i 1000 Mbps full duplex dell’Ethernet! Addirittura, per connessioni tra più di due punti il coassiale riesce a reggere una banda aggregata ancora maggiore (MoCA 2.5: 2.5 Gbps).

Anche gli adattarori MoCA fanno uso di chipset, uno di questi è il Maxlinear MxL3710. Personalmente sospetto che sia uno dei pochi produttori in circolazione, nel senso che guardando le varie review degli atattatori MoCA noto che le interfacce web di configurazione si assomigliano tutte davvero moltissimo tra loro.

Rispetto alla Ethernet, comunque, le latenze restano comunque ben più alte e si attestano nei dispositivi attuali intorno ai 3 ms, che comunque è generalmente meglio rispetto a molti powerline.

Notare infine che, siccome le frequenze di lavoro vanno dai 1100 ai 1600 MHz, gli splitter presenti nella calata del cavo antenna dovrebbero a rigore avere un’adeguata banda passante. In molti casi essi lavorano fino alla banda satellitare (2500 MHz).

Ethernet vs Powerline e MoCA: Latenza

Vi potreste chiedere come mai una latenza così alta anche nel caso di adattatori MoCA visto che, come troughput, siamo a livelli di eccellenza. La risposta sta nella modulazione e demodulazione che deve essere fatta, ben più complessa rispetto a quella usata per i segnali elettrici Ethernet 1000Mbps. Il segnale viene modulato a frequenze tra i 1100 e i 1600 MHz (sopra la banda TV e sotto quella satellitare), suddiviso fino a 5 canali larghi 100 MHz ciascuno. La modulazione arriva ad essere la OFDM 1024-QAM quindi anche qui possiamo dire che il chipset il suo mezzo miracoletto lo fa. Il prezzo da pagare è un tempo di codifica/decodifica maggiore rispetto ad ethernet, dove la codifica è molto più semplice ed immediata.

Anche nel caso degli adatttori powerline la modulazione è la OFDM, con codifiche che variano a seconda del particolare standard e dei disturbi presenti, fondamentalmente si tratta di QAM (nel caso degli adattatori G.hn si arriva alla 4096-QAM).

Possiamo dunque dedurre che la modulazione OFDM+QAM è tra i principali responsabili per la maggior latenza rispetto allo standard Ethernet, mentre non ci sono dubbi che il troughput sia elevato, essendo la QAM in grado di trasportare molta informazione per simbolo e l’accoppiata OFDM+QAM massimizza la capacità trasmissiva anche in presenza di disturbi o attenuazioni.

Altre differenze da me riscontrate tra Powerline e MoCA

La mia rete di casa è suddivisa in due sezioni: la “primaria” ha switch, NAS, router verso Internet, access point (Mikrotik hAP AC Lite) e adattatore MoCA (prima era Powerline), la seconda -a valle dell’altro adattatore- vede un televisore e l’access point secondario (Mikrotik hAP Lite). Ho abilitato CAPSMan per aggregare la rete wireless dei due Mikrotik.
Dopo avere in uso gli adattatori MoCA da un po’ di tempo ormai (una coppia di Starlink 2525), posso dire che rispetto agli adattatori Powerline che ho avuto (ne ho cambiati parecchi nel tempo, gli ultimi sono degli Zyxel da 600Mbps dichiarati) ci sono alcune sottili differenze, oltre alla banda consistentemente vicina al livello ethernet, che mi fanno propendere per il sistema MoCA nonostante il prezzo sia più alto (attualmente intorno ai 140€ a coppia):

  • Stabilità del collegamento: Powerline è stabile ma ogni tanto -a volte qualche settimana a volte un paio di mesi e con tutti gli adattatori che ho avuto- la connessione si interrompe e ne devo riavviare uno (o a volte entrambi). Me ne accorgo perché i dispositivi collegati all’access point secondario perdono la connettività. Gli adattatori MoCA non sembrano manifestare mai alcun problema di continuità del collegamento.
  • Inoltre, cosa più subdola, con l’addattatore powerline alcuni dispositivi connessi via wi-fi all’access point secondario, come la mia stampante, poco tempo dopo l’entrata in risparmio energetico risultavano inaccessibili. Per poter stampare mi toccava spesso spegnerla e riaccenderla. Da quando sono passato a MoCA questo problema è scomparso, il che mi fa pensare a qualche limitazione a livello di L2 bridging che ora non c’è più, ma è difficile dirlo con certezza.
  • Calore: sicuramente dipenderà dalla marca e dal modello ma gli adattatori MoCA non scaldano affatto, i powerline invece diventano ben caldi al tatto, quindi sicuramente consumano anche di più.

Tabella riassuntiva

Le mie esperienze con i due tipi di adattatori sono così riassumibili:

Gigabit EthernetMoCAPowerline
Latenza [ms]0,12-33-6
Troughput reale [Mbps]10001000 su porta ethernet
(2500 su coax)
50~300
StabilitàRiferimentoOttimaMolto buona
Generazione di radiodisturbiNoNo (segnali confinati nel coassiale)Moderata e accettabile (ma non inesistente, per via di come è cablata la rete elettrica)
Tabella riassuntiva delle caratteristiche tipiche per tipologia di connesione

Conclusioni

Mi è sembrato utile condividere le esperienze che ho avuto a casa mia con vari tipi di adattatore che nel tempo ho testato. Questo articolo non vuol essere un paragone del tipo “questo è meglio di quello” nè tanto meno “questo va male a prescindere, quello invece va bene”.

Piuttosto, vorrebbe offrire una serie di considerazioni utili per farsi un’idea più chiara di cosa si può ragionevolmente pretendere da un certo tipo di adattatore.

Penso non ci sia dubbio che l’ideale, potendolo fare, sarà sempre passare un bel cavo Ethernet (es. Cat.5E o Cat.6) e connettere così le varie sezioni della rete domestica.

Non potendolo fare ci sono vari compromessi accessibili, con prezzi molto diversi tra loro e caratteristiche pure diverse. Per me che sono un radioamatore minimizzare i disturbi radio è molto importante e dunque preferisco passare i segnali all’interno di cavi schermati (il coassiale TV in questo caso) invece che nella rete elettrica.

Realizzazione di circuiti “Manhattan style”

Oggi voglio condividere una tecnica di costruzione di prototipi di circuito elettronico chiamata “Manhattan style”.

Mi ha colpito perché riesce ad unire la semplicità di realizzazione (un circuito è fattibile con pochissimi mezzi) alla possibilità di realizzare circuiti che lavorano in alta frequenza / radiofrequenza, o circuiti a larga banda, quindi ad esempio applicazioni radio, fino alle VHF e oltre. Inoltre, per costruzione, un circuito così realizzato ha piste di lunghezza minima, permettendo l’erogazione di una discreta potenza.

In rete c’è una certa quantità di documentazione in merito.

Segnalo subito gli ottimi articoli di Chuck Adams K7QO:

e il video che forse per primo mi ha avvicinato a questa tecnica, di W2AEW: #122: Electronic Circuit Construction Techniques: review of some prototype circuit building methods, che passa in rassegna vari metodi di costruzione di prototipi.

Se capite l’inglese, potete tranquillamente saltare il resto di questo articolo e navigare partendo dai link sopra.

Il “Manhattan style”.

Concettualmente è molto semplice. Si parte da una basetta per circuiti stampati vergine a faccia singola e da dei frammenti di basetta a faccia singola di area piccola che chiamiamo “zolle”, ottenuti ad esempio con una roditrice, una tenaglia o una tagliatrice.

Dato lo schema elettrico, ciascun nodo della rete elettrica corrisponde ad una “zolla”. Supponiamo di voler fare un partitore resistivo, come illustrato qui:

 

Partitore resistivo con i nodi evidenziati e cerchiati in rosso.

Come si vede, si identifica con una lettera ciascun nodo della rete elettrica, che corrisponderà ad una zolla Manhattan. Da qui alla realizzazione non serve usare alcun CAD, bastano solo il cervello e un po’ di buona volontà.

La basetta e le zolle tagliate con una tenaglia da lamiera.

Posizionare le zolle nella basetta e incollarle secondo la logica dello schema elettrico. Nei riferimenti si dice di usare una “super glue”, io preferisco la colla a caldo perché con il semplice posizionamento del saldatore si fonde nuovamente e diventa riposizionabile. Il raffreddamento è immediato grazie al rame.

 

Mettere una goccia di colla fusa sulla zolla e attaccarla alla basetta.

 

Basetta con le zolle incollate. La superficie di base sarà per noi un ottimo piano di massa!

 

Ora, procediamo con la saldatura delle nostre resistenze di partitore. Il saldatore dovrà avere una discreta riserva di potenza, credo che 40W siano sufficienti nella gran parte dei casi. Sagomiamo le resistenze nel seguente modo:

 

…e procediamo con la saldatura. Si inizia stagnando la zolla e successivamente i componenti:

 

 

Schema elettrico implementato, corredato di scritte a penna indelebile. Il layout dei componenti riflette fedelmente lo schema elettrico ed è facile da interpretare e seguire!

Nello spazio libero disponibile sul piano di massa si possono aggiungere, con una penna indelebile, informazioni utili come ad esempio la lettera della zolla, il numero di componente, note, ecc…

In presenza di circuiti integrati?

Nel caso di circuiti integrati si possono sagomare zolle più complesse, aiutandosi con appositi strumenti da taglio.

Ad esempio è facile realizzare una zolla per ospitare uno zoccolo per IC con pedinatura DIP:

Base per socket DIP8 realizzata tagliando lo spezzone di basetta con un trapano ad alta velocità Proxxon.

Una simile zolla va sempre incollata sulla basetta ospitante, mentre si possono saldare i collegamenti ai pin dell’integrato nelle “isole” di rame scavate su di essa, come si vede nella foto. Con un trapano ad alta velocità e un minidisco da taglio per metalli si ottiene facilmente questo risultato, asportando solo lo strato di rame della basetta. La distanza tra le “isole” visibile in foto è certamente sufficiente per operare con tensioni fino all’ordine dei 100V.

Una tecnica alternativa per gli IC: la “Dead Bug Technique”, ovvero la tecnica dello scarafaggio morto.

Potrebbe risultare difficoltoso ricavare una zolla per il montaggio di uno zoccolo per IC. In questo caso, possiamo sempre ricorrere ad un metodo ancora più semplice, che va sotto il nome di “dead bug technique”.

Come suggerisce il nome, si tratta di posizionare e incollare il chip “capovolto”, sulla basetta, ricordandosi che la pedinatura ora risulterà specularmente invertita!

Il risultato non è elegante da vedere ma funziona, ed è duro da battere se c’è bisogno di sfruttare al massimo la banda passante del componente.

Il difetto maggiore della tecnica “Dead bug” che ho riscontrato è la relativa debolezza dei pin dell’integrato, per cui bisogna stare molto attenti quando si opera su di essi. Non è facile saldare componenti direttamente sui piedini, ma con l’esperienza il problema scompare. Un altro difetto è la scarsa manutenibilità della parte di circuito così realizzata. La zolla con il socket è un’alternativa decisamente migliore da questo punto di vista.

 

Vantaggi dell’approccio Manhattan.

L’approccio è molto semplice e diretto, e ha l’enorme pregio di mantenere facile lo sbroglio del circuito e vicini i componenti tra loro.

Inoltre, se non si devono gestire frequenze altissime (VHF), è possibile disporre i componenti discreti lasciando ampio spazio per applicare la sonda di un oscilloscopio ed avere anche un circuito facilissimo da debuggare.

Ultimo ma non ultimo, no necessità di CAD o altri sistemi, no sostanze chimiche, nulla: solo una basetta e degli utensili da taglio.

 

73 de IU3JSX Marco

 

 

Weller Bp865Ceu 6W-8W saldatore portatile a batterie

 

Ho acquistato questo saldatore portatile a batterie come ausilio per fare saldature a stagno in punti dove non arrivano né la 220V né la 12V DC e mi sto trovando bene, quindi ho deciso di condividere una piccola recensione.
Per la cronaca, a casa ho una stazione saldante Weller WSD-81 (per me un vero gioiello, non saprei che difetto trovarle) e un saldatore a stilo tipo JBC da 40W, che mi porto in giro, mentre avevo anche un saldatore da 12V con attacco accendisigari che però ho buttato perché si scaldava poco e lentamente. Odiavo il fatto che avesse un puntale pesante quasi come il JBC, ma che non si scaldava mai. Perché non fare un puntale leggero che a quel punto si sarebbe scaldato prima e meglio?
Questo Weller Bp865Ceu fa esattamente questo. Puntale di massa ridotta che quindi si scalda (e si raffredda) velocemente, arrivando in temperatura molto rapidamente. Con solo 6-8W di potenza un puntale leggero è una scelta obbligata che mi trova pienamente d’accordo.
Ho subito rimpiazzato il puntale conico con l’altro in dotazione, quello “a cacciavite”, per aumentare la superficie di contatto con le parti da saldare.
Finora problemi zero, funziona benissimo. Facile da impugnare, pesa più o meno come le 4 batterie AA montate, quindi più di uno stilo tradizionale, ma questo non compromette la saldatura.
L’ho usato in barca per una modifica a un circuito direttamente dentro la sua scatola in PVC e mi sono trovato benissimo, riuscendo a dissaldare un componente vicino al bordo scatola, senza toccarlo, e saldare il sostituto senza bruciare nulla. La punta sottile facilita molto il lavoro, e la potenza ridotta qui è anch’essa un vantaggio: aiuta a fondere solo la parte a contatto senza dissaldare componenti adiacenti. Il cappuccio permette di riporre il saldatore nella cassetta senza il rischio che si possa accendere. Ottimo. Ho tolto il JBC dalla cassetta degli attrezzi!

Come si vede nel video, in una decina di secondi inizia a fondere lo stagno 60-40 (per la precisione Sn60Pb38Cu2), che ha il punto di fusione a 188 gradi, e in un tempo analogo anche lo Sn99Ag0,3Cu0,7 – ma quest’ultimo ha un punto di fusione almeno 30° più alto.
Consiglio l’uso di stagno sottile (non più di 0.6mm) in quanto più preciso e dissipa meno calore. Come lega, per chi è alle prime armi forse è meglio stare sul il Sn60Pb40 o similare, che fonde prima delle varianti prive di piombo.

Se dovete saldare spesso parti in rame di grossa sezione, siano esse lamine o cavi e dovete farlo lontano dalla 220V, 8W non bastano: meglio un saldatore a gas, che però fatica a stare sotto i 500° e se lo usate su un PCB rischiate di bruciare i componenti o di staccare le piste di rame!
Se dovete fare saldature di componenti elettronici su PCB o comunque di cavi e componenti che non siano di potenza, come nel mio caso, è un prodotto molto soddisfacente.

 

73 de IU3JSX

Arduino Pro Mini clones 12V supply and 4B2X regulator

Yesterday I was working with a Chinese clone of Arduino Pro Mini, which I bought for less than 10€ at Amazon.

I needed to build a very low consumption device and after reading this article I found the Pro Mini to be perfectly suited for the purpose.

The clone is one of those labeled with “The Simple”  in the back of the PCB, as shown here:

For my project I had to use 12V DC input so I fed it by the RAW pin, as described in the Arduino Pro Mini documentation.

I programmed it trough an Arduino Uno, everything went good so I decided to put it into the final circuit.

Long story short, it fried immediately after supplying 12V.

I was surprised by such a behavior so I checked back in the documentation a few times, but everything looked correct, it had to work. I looked at the PCB schematics in the Pro Mini documentation and found the regulator to be the MIC5205. The datasheet shows max operating voltage =16V, ensuring safe and reliable operation at 12V.

I looked at my board and found out the regulator was not a MIC5205, but a “4B2X” instead (it must be some clone, I can’t find its datasheet UPDATE: thanks to Squonk42 who commented back: https://www.torexsemi.com/file/xc6205/XC6204-XC6205.pdf), so I searched the web and found this discussion on the Arduino Pro Mini Chinese clones and their voltages, in which some regulator labels are listed, including  KB33, S20K, F34V, L0RA, L0RB for the 3.3V variant. 4B2X was not showing up, so I started to suspect either a defective component or an out-of-specs regulator.

I then decided to test another new Arduino Pro Mini board that came with the same “4B2X” regulator as the fried one, and started supplying 5V to the RAW pin, increasing the voltage at small steps, to find wether or not it was capable of working with a 12V supply voltage (as stated in the Arduino Pro Mini documentation).

The regulator output stayed at 3.3V until up to about 11.5 V input, then a single increase of 0.2V made the output “run away”, all the way up to the input voltage, frying the microcontroller. The exact same input/output behavior was delivered by the regulator of the first failed board.

Looks like the 4B2X regulator is not suited for 12V, its maximum input voltage being just about 11.5V, well below the MIC5205’s 16V maximum, which is needed in car/boat/camper environments that use Pb 12V batteries, where voltages typically grow up to 13.8 – 14.4V when the engine is on.

In conclusion, if you bought an Arduino Pro Mini clone that comes with that regulator and you need to supply a 12V DC voltage, consider adding a zener diode (5V at least) to drop the voltage down to safe values. Even better, if you have a spare MIC5205 or a real equivalent just solder it in place of the 4B2X.

Hopefully this will avoid someone frying his new Arduino Pro Mini just like it happened to me.

73 de IU3JSX

MCHF kit building

Hi all, I’ll soon post details about the radio kit I’m building, M0NKA’s Mchf board v0.6.

I’m working on it in my very limited spare time. I’m almost finished with soldering of the components and I’m currently winding the last transformers (namely T2 and T3).

I’ll post photos and a sort of tutorial for the assembly of the kit for newbies. The kit is very fun to build and allows one to learn SMD soldering, inductors winding, circuit testing and so on.

73!